Case C1.1: Transonic Ringleb Flow
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I. Discretization, iterative method and hardware

See the appendices.

II. Case summary

We submit two sets of results (in Tecplot format): one set obtained imposing an inviscid (slip) wall
boundary condition on walls, and one set obtained imposing the exact solution on walls. This test case has
been computed on four structured grids containing 129 x 65, 257 x 129, 513 x 257 and 1025 x 513 vertices
respectively. The finest grid is obtained by applying elliptic smoothing to an algebraically created grid. Both
a second and a fourth order discretization of the Laplace equation is used for this smoothing. It turned out
that the resulting grids produced virtually indistinguishable results. The point distribution on the boundary
is uniform and the coarse grids are obtained by deleting recursively every other grid line from the fine grid.
The coarser grids are obtained by deleting every other grid line from the finer grid. The coarsest grid used
is shown in figure 1.

When using the slip wall boundary condition, it was found that at least a 3" (on the coarsest grid at
least a 4*") order discretization must be used on all but the finest grid to obtain a stable solution. For
the 2"dorder scheme the computation of the metric terms is not accurate enough to represent the boundary
correctly. A typical convergence history for the 5** order scheme on the (257 x 129) grid is shown in figure 2,
which clearly shows the convergence to machine zero. As a restart is carried out from the exact solution,
no grid sequencing needs to be used here. The total amount of CPU time required is 345 seconds, which
corresponds to 61.7 times the cost of the Taubench.

As the exact solution for this case is isentropic, the deviation from the exact entropy can be used as a
measure of the error, i.e.

_ exact
error = (5) = exp (s ), exp (s) = P (1)

exp (Sexact) pfy
The L? norm of this quantity is defined as

N 1/2

Z error? |Jj|

i=1

Lzrror = zNi ’ (2)

> 1
i=1

|.J;] being the determinant of the metric Jacobian. Contour plots of the Mach number and entropy error,
defined in equation (1), for the fine grid are shown in figures 3 and 4 respectively. The entropy error as a
function of grid size is plotted in figure 5, while in figure 6 the plot of the entropy error against the work
units is shown.

*Department of Mechanical Engineering, University of Twente, the Netherlands, e-mail: g.giangasperoQutwente.nl
TDepartment of Mechanical Engineering, University of Twente, the Netherlands, e-mail: e.t.a.vanderweide@utwente.nl
fDepartment of Mathematics, University of Bergen, Norway, e-mail: Magnus.Svard@math.uib.no

§NASA Langley Research Center, Hamption, VA, e-mail: mark.h.carpenter@nasa.gov

YUppsala University, Uppsala, Sweden, e-mail: ken.mattsson@it.uu.se

1of 7

American Institute of Aeronautics and Astronautics



o
SN

~ =
1 SR
B S
T,
S
0.5 -
ST

e
s
EEe

REnmeea
G
S

i
s e

S
i
e //

Figure 1. 129 x 65 grid for test case C1l.1. This grid is
obtained from the finest grid by applying a regular coars-
ening three times.
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Figure 3. Contour plot of the Mach number for the 5"

order scheme on the grid (257 x 129) grid for test case C1.1.
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Figure 2. Convergence history for the 5'" order scheme on

the (257 x 129) grid for test case C1.1. The total amount of
CPU time needed is 61.7 times the cost of the Taubench.
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Figure 4. Contour plot of the entropy error for the 5th

order scheme on the (257 x 129) grid for test case C1.1.
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Figure 5. Ringleb flow: L2 norm of the entropy error vs grid size. The slopes corresponding to 2°¢ to 5" order
accuracy are also shown.
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Figure 6. Ringleb flow: L2 entropy error vs work units.
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Using inviscid wall boundary conditions does not lead to a decrease in accuracy compared to prescribing
the exact solution on the walls. As a matter of fact the former results are slightly more accurate. However,
when the exact solution at boundaries is imposed it requires less computational work to compute a solution
than when inviscid wall boundary conditions are used. This is caused by the fact that the nonlinear system
can be solved more easily when the exact solution is prescribed on all boundaries. Furthermore, for the
finer grids the convergence rate decreases below the design accuracy of the scheme. In an attempt to assess
whether or not this discrepancy is caused by finite arithmetic, we carried out a quadruple precision run for
the Ringleb flow on the finest grid (1025 x 513), with the 5'"order scheme and using inviscid wall boundary
condition at walls. It converged almost 18 orders of magnitude and the final residuals are O(le — 24). Note
that also the grid has been computed with quadruple precision. The quadruple precision computation did
not bring any improvement in the entropy error and on the convergence rates. The cause of the drop in
convergence rate is still under investigation.

A. Background information for the SBP-SAT scheme

As is well-known, stability of a numerical scheme is a key property for a robust and accurate numerical
solution. Proving stability for high-order finite-difference schemes on bounded domains is a highly non-
trivial task. One successful way to obtain stability proofs is to employ so-called Summation-by-Parts (SBP)
schemes with Simultaneous Approximation Terms (SAT) for imposing boundary conditions. With a simple
example, we will briefly describe how stability proofs can be obtained.

Consider the scalar advection equation,

urtau, =0, 0<z<l 0<t<T (3)
atu(0,t) = atg(t)
a”u(l,t) =a” g (t)

where a™ = max(a,0) and ¢~ = min(a, 0). Furthermore, we augment the equation with initial data u(z,0) =
f(x), bounded in L2. To demonstrate well-posedness, we employ the energy method.

1
Hu||f + a/ uuy dr =0
0
[ull? < au®(0,t) — au®(1,t) < a*gi(t)® —a” g, (t)? (4)

Integrating in time gives the bound

- < W+ [ awpat-a [ gpa )

For linear PDEs, such a bound is sufficient to prove well-posedness.
Next, we turn to the SBP-SAT semi-discretization of (3). To this end, we introduce the computational
grid, z; = th, i € {0,1,2,..., N} and h > 0 is the grid spacing. For the moment, we keep time continuous.
With each grid point x;, we associate a value v;(t), and define a grid function v(t) = (v, v1,vs,...)T. The
SBP difference operator, D is a matrix with the following properties: D = P~!Q where P and ) are two
matrices; P = PT > 0and Q+QT = B = diag(—1,0, ...,0,1). The matrix P can be used to define a weighted
I? equivalent norm as |[v]|?> = vT Pv. We will also need the vectors ey = (1,0,0...,0)T and ex = (0, ...,0,1)7.
Let w denote a smooth function and define a grid function @ = (w(zp), ..., w(zy))T and w, = (we(z0), ..., w(TN))
It turns out that the SBP property precludes the accuracy of D to be uniform in space. We have

T

Do =w, +T
where T is the truncation error. In general, it takes the form,
TT = (O(h%),...,O(h*), O(RP), ...,O(hP), O(h®), ..., O(h*)). (6)
where s < p and the lower accuracy is confined to a few (finite) number of points close to the boundary.

SBP operators exist with various orders of accuracy, [1]. In particular, if P is a diagonal matrix, there are
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SBP operators with p even and p < 8, and s = p/2. If P is allowed to have off-diagonal elements for a few
points near the boundary s = p — 1 can be achieved.
Using the SBP operators, we now define a semi-discrete scheme for (3).

v +aDv = oat P Y eg(vo — gi(t)) + a” 0. P ey (v — g0 (1))

The right-hand side are the SAT:s, which impose the boundary conditions weakly. (Originally proposed in
[2].) o1, are two scalar parameters, to be determined by the stability analysis. Multiplying by 20T P, we
obtain

[vll7 — a(vg — vi) = 200" vo(vo — gu(t)) + 20~ oron (VN — gr(t))

(7)

For stability, it is sufficient to obtain a bound with g; . = 0. In that case, it is easy to see that we must
require 0; < —1/2 and o, > 1/2 to obtain a bounded growth of ||v||. More generally, allowing boundary data
to be inhomogeneous when deriving a bound leads to strong stability. (See [3]. The benefit of proving strong
stability as opposed to stability is that less regularity in the boundary data is required.) For strong stability,
it can be shown that o;, must satisfy oy < —1/2 and o, < 1/2, i.e., strict inequalities. As an example, the
choice 0, = —1,0, = 1 leads to

[vll7 — a(vg — vi) = —2atvo(vo — gi(t)) + 20~ v (v — gr(1))

or
[0l < —a*(vo — 9)* + atgu(t)* + a” (on — gr(t)*) —a"g° (8)

If vo = gi,o8 = gr, (8) is the same as (4), but this is not the case and the additional terms add a small
damping to the boundary. Upon integration of (8) in time, an estimate corresponding to (5) is obtained. We
also remark that the SAT terms are accurate as they do not contribute to a truncation error in the scheme.
Furthermore, semi-discrete stability guarantees stability of the fully discrete problem obtained by employing
Runge-Kutta schemes in time, [4].

The above example, demonstrates the general procedure for obtaining energy estimates for an SBP-SAT
scheme. Naturally, for systems of PDEs, in 3-D with stretched and curvilinear multi-block grids, and with
additional parabolic terms, the algebra for proving stability becomes more involved. However, the resulting
schemes are still fairly straightforward to use. For the linearized Euler and Navier-Stokes equations, semi-
discrete energy estimates have been derived. (See [5-7] and references therein.) Different boundary types,
including far-field, walls and grid block interfaces are included in the theory. For flows with smooth solutions,
linear stability implies convergence as the grid size vanishes. (See [8].)

B. Code description

Both a general code and specialized codes for some of the test cases (used in the 15* and 2" high order
workshop, see [9]) are available. The general code is a 3D code that can handle multiblock grids and can
run on (massively) parallel platforms. For load balancing reasons the blocks are split during runtime in an
arbitrary number of sub-blocks with a halo treatment of the newly created interfaces, such that the results
are identical to the sequential algorithm.

The specialized codes assume a single block 2D grid and do not have parallel capabilities, hence they are
relatively easy to modify for testing purposes. Due to the fact that these codes can only be used for one
specific test case and the fact that the general purpose code can only handle 3D problems, the efficiency of
the specialized codes is quite a bit higher than the general purpose code.

The discretization schemes used are finite difference SBP-SAT schemes, see section A, of order 2 to 5.
Thanks to the energy stability property of these schemes no or a significantly reduced amount of artificial
dissipation is needed compared to schemes which do not posses this (or a similar) property. This leads to a
higher accuracy of the numerical solutions.

For the steady test cases the set of nonlinear algebraic equations is solved using the nonlinear solver
library of PETSc [10]. This library requires the Jacobian matrix of the spatial residual, which is computed
via dual numbers [11] and appropriate coloring of the vertices of the grid, for which the PETSc routines are
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used. Initial guesses are obtained via grid sequencing, where appropriate. The solution of the linear systems
needed by PETSc’s nonlinear solution algorithm is obtained by Block ILU preconditioned GMRES.

Tmplicit time integration schemes of the ESDIRK type [12] are available, for which the resulting nonlinear
systems are solved using a slightly adapted version of the steady state algorithm explained above. However,
for the unsteady test cases considered, the Euler vortex and the Taylor-Green vortex, the time steps needed
for accuracy are relatively small compared to the stability limit of explicit time integration schemes and
therefore the explicit schemes are better suited for these cases. The available explicit schemes are the
classical 4" order Runge Kutta scheme (RK4, [13]) and TVD Runge Kutta schemes up till 3'¢ order [14].
As the maximum CFL number of the RK4 scheme is significantly higher than the CFL number of the TVD
Runge Kutta schemes, the RK4 scheme is used for the unsteady test cases mentioned above.

For the post processing standard commercially available software, such as Tecplot, and open-source
software, such as Gnuplot, are used. Grid adaption has not been carried out.

C. Machines description

The results for the easy test cases have been obtained on a Linux work station running Ubuntu 10.04
with an Intel i7-2600 CPU running at 3.4 GHz, with 8 Mb of cache. The machine contains 16 Gb of RAM
memory with an equivalent amount of swap. Running the Taubench on this machine led to a CPU time of
5.59 seconds (average over 4 runs).

The difficult test cases were run on up to 512 processors on the LISA machine of SARA, the Dutch
Supercomputing Center and Hexagon, the Cray XE6 machine of the University of Bergen. Running the
Taubench on these machines led to a CPU time of 10.3 and 10.8 seconds respectively (average over 4 runs).
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